
Probabilistic Methods in Combinatorics

Solutions to Assignment 13

Problem 1. Let F1, . . . ,Fk be all decreasing or all increasing families of subsets of {0, 1}N

and let P be a product probability space on {0, 1}N . Then,

P[F1 ∩ F2 · · · ∩ Fk] ≥
k∏

i=1

P[Fi].

Solution. We prove the statement in case all Fi are decreasing, the other case is analogous.

We proceed by induction on k. For k = 1 there is nothing to prove. For k = 2, this is the

FKG inequality from the lecture notes. Now, suppose k > 2 and the statement holds for

k − 1. First, we show that F ′ = F1 ∩ · · · ∩ Fk−1 is a decreasing family. Indeed, suppose

A ∈ F ′ and B ⊆ A. Then, by definition A ∈ Fi, for all i ∈ [k− 1]. Since Fi is decreasing, we

have B ∈ Fi and it follows that B ∈ F ′, as needed. Hence, we can apply the FKG inequality

for the two families F ′ and Fk and the induction hypothesis to conclude

Pr[F1 ∩ · · · ∩ Fk] ≥ Pr[F ′ ∩ Fk] ≥ Pr[F ′] Pr[Fk] ≥
k∏

i=1

Pr[Fi],

finishing the proof.

Problem 2. Let G be a graph with m edges, and let S be a random set of vertices of

G obtained by picking each vertex independently with probability 1/2. Prove that the

probability that S is an independent set in G is at least (3/4)m.

Solution. For every edge uv let Auv be the event that at most one of u and v is in S. Note

that this event is decreasing: if Auv holds for S and some vertex is removed from S, then

the event still holds. Denote the edges of G by e1, . . . , em. Then the event Ae1 ∩ . . . ∩ Aei

is decreasing for every i. Thus, by the FKG inequality in the form proved in Problem 1 we

find that

P[S is independent] = P[Ae1 ∩ . . . ∩ Aem ] ≥ P[Ae1 ] · . . . · P[Aem ] =

(
3

4

)m

,

where we used the fact that P[Aei ] = 1 − (1/2)2 = 3/4 (because Aei holds unless both its

vertices are in S).
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Problem 3. A family of subsets F is called intersecting if A∩B ̸= ∅ for every A,B ∈ F . Let

F1, . . . ,Fk be intersecting families of subsets of [n] := {1, . . . , n}. Show that |F1∪ . . .∪Fk| ≤
2n − 2n−k.

Solution. Replace each Fi with its up-closure Hi in 2[n], i.e.

Hi = {A ⊆ [n] : ∃B ∈ Fi s.t. B ⊆ A}.

Note that since Fi is intersecting, so is Hi. Moreover, in order to prove that |F1∪ . . .∪Fk| ≤
2n − 2n−k, it suffices to show that |H1 ∪ . . . ∪Hk| ≤ 2n − 2n−k, because Fi ⊆ Hi.

Now pick a set X ⊆ [n] uniformly at random, i.e. each element of [n] is in X with probability

1/2, independently, and let Ei be the event thatX /∈ Hi. Note that the event Ei is decreasing,

as Hi is increasing (that is why we replaced Fi by its up-closure). By the version of FKG

inequality proved in Problem 1,

P[E1 ∩ . . . ∩ Ek] ≥ P[E1] · . . . · P[Ek] ≥
(
1

2

)k

,

where we used the fact that P[Ei] ≥ 1/2, which follows from the fact that |Hi| ≤ 2n−1.

Indeed, because Hi is intersecting, it contains at most one of A, [n] \A for every set A ⊆ [n].

Finally, by the defintion of the events Ei, we have

|H1 ∪ . . . ∪Hk| = 2n (1− P[E1 ∩ . . . ∩ Ek]) ≤ 2n(1− 2−k),

as required.

Problem 4. Show that the probability that in the random graph G(2k, 1/2) the maximum

degree is at most k − 1 is at least 1/4k.

Solution. Let G ∼ G(2k, 1/2) and let V (G) = [2k]. Now consider an arbitrary vertex

v ∈ [2k]. Then, the degree of v is distributed as Bin(2k−1, 1/2). The distribution of Bin(2k−
1, 1/2) is symmetric around the mean 2k−1

2
. Note that (2k − 1)/2 is not an integer. Hence

Pr[d(v) ≤ k−1] = Pr[Bin(2k−1, 1/2) < (2k−1)/2] = Pr[Bin(2k−1, 1/2) > (2k−1)/2] = 1/2.

For every v ∈ [2k], let Fv denote the family of subsets of {0, 1}(
[2k]
2 ) representing all graphs

on the vertex set [2k] in which v has degree at most k − 1. It is easy to see that Fv is a

decreasing family since by removing edges from a graph we can only decrease the degree of

v. Applying the inequality from Problem 1 for sets F1, . . . ,F2k, we have

Pr[∆(G) ≤ k − 1] = Pr[G ∈ F1 ∩ F2 ∩ · · · ∩ F2k] ≥ (1/2)2k,
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as claimed.

Problem 5. Let S1, . . . , Sk be random subsets of {1, . . . , n}, where each set Si contains

an element x ∈ {1, . . . , n} with probability 1/
√
n and all of these choices are independent.

Prove that with probability at least (1−1/e)(
k
2), we have for every 1 ≤ i < j ≤ k, Si∩Sj ̸= ∅.

Solution. Let Ω = {0, 1}kn, where the coordinate tn+ j for j ∈ [n− 1] represents whether

the set St+1 contains the element j+1. It is clear that on this product probability space the

events Si∩Sj ̸= ∅ are increasing events. Thus it remains to show that for fixed i, j satisfying

1 ≤ 1 < j ≤ k, we have P(Si∩Sj ̸= ∅) ≥ 1−1/e, and an application of the inequality proved

in Problem 1 finishes the proof. As each Si and Sj contains each element independently, we

have

P(Si ∩ Sj = ∅) =
(
1− 1√

n
· 1√

n

)n

=

(
1− 1

n

)n

≤ e−1.

Taking the complement of this event gives the desired inequality.
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